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Abstract

This paper describes our new hybrid parallelization of the Finite Element Tearing and
Interconnecting (FETI) method for the multi-socket and multi-core computer cluster.
This is an essential step in our development of the Hybrid FETI solver were small
number of neighboring subdomains is aggregated into clusters and each cluster is pro-
cessed by a single compute node.

In our previous work we have implemented FETI solver using MPI paralleliza-
tion into our ESPRESO solver. The proposed hybrid implementation provides better
utilization of resources of modern HPC machines using advanced shared memory run-
time systems such as Cilk++ runtime. Cilk++ is an alternative to OpenMP which is
used by ESPRESO for shared memory parallelization.

We have compared the performance of the hybrid parallelization to MPI-only par-
allelization. The results show that we have reduced both solver runtime and memory
utilization. This allows a solver to use a larger number of smaller sub-domains and in
order to solve larger problems using a limited number of compute nodes. This feature
is essential for users with smaller computer clusters.

In addition, we have evaluated this approach with large-scale benchmarks of size
up to 1.3 billions of unknowns to show that the hybrid parallelization also reduces
runtime of the FETI solver for these types of problems.

Keywords: ESPRESO, Total FETI, Hybrid Parallelization, MPI, Cilk++.

1 Introduction

The goal of this paper is to describe the Hybrid parallelization of FETI method based
on our variant of the Finite Element Tearing and Interconnecting (FETI) type domain
decomposition method called Total FETI (TFETI) [6]. The original FETI method,
also called the FETI-1 method, was originally introduced for the numerical solu-
tion of large linear systems arising in linearized engineering problems by Farhat and
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Roux [1]. In the FETI methods, a body is decomposed into several non-overlapping
subdomains and the continuity between the subdomains is enforced by Lagrange mul-
tipliers. Using the theory of duality, a smaller and relatively well conditioned dual
problem can be derived and efficiently solved by a suitable variant of the conjugate
gradient algorithm.

The original FETI algorithm, where only the favorable distribution of the spectrum
of the dual Schur complement matrix [10] was considered, was efficient only for a
small number of subdomains. So it was later extended by introducing a natural coarse
problem [12, 13], whose solution was implemented by auxiliary projectors so that
the resulting algorithm became, in a sense, optimal [12, 13]. Even if there are several
efficient coarse problem parallelization strategies [14], still there are size limitations of
the coarse problem. Thus several hybrid (multilevel) methods were proposed [15,16].

The key idea is to aggregate a small number of neighboring subdomains into the
clusters, which naturally results in the smaller coarse problem. In our Hybrid Total
FETI [17], the aggregation of subdomains into the clusters is enforced again by La-
grange multipliers. Hybrid FETI method uses two level decomposition: the problem
is decomposed into clusters (the first level), then the clusters are decomposed into
subdomains (the second level).In the TFETI method [6], also the Dirichlet bound-
ary conditions are enforced by Lagrange multipliers. Hence all subdomain stiffness
matrices are singular with apriori known kernels which is a great advantage in the nu-
merical solution. With known kernel basis we can effectively regularize the stiffness
matrix [7] and use any standard Cholesky type decomposition method for nonsingular
matrices.

This paper is an extended version of the paper [2] presented at the Fourth Interna-
tional Conference on Parallel, Distributed, Grid and Cloud Computing for Engineer-
ing. Further evaluation of the hybrid parallelization in the ESPRESO FETI Solver for
large scale problems, up to 1.3 billion of unknowns, is described in Section 4.3. In
this section we also identify under what conditions the main bottleneck of the FETI
method, the coarse problem, becomes unacceptable. We also present our current ef-
fort, which deals with reducing the coarse problem size using the Hybrid FETI method
in Section 5.

1.1 Total FETI method

The FETI-1 method [6] is based on the decomposition of the spatial domain into
non-overlapping subdomains that are glued by Lagrange multipliers, enforcing arising
equality constraints by special projectors. The original FETI-1 method assumes that
the boundary subdomains inherit the Dirichlet conditions from the original problem.
This means, that subdomains touching Dirichlet boundary are fixed while others are
kept floating; in linear algebra speech, corresponding subdomain stiffness matrices are
non-singular and singular, respectively. The basic idea of our Total-FETI (TFETI) [6]
is to keep all the subdomains floating and enforce the Dirichlet boundary conditions
by means of a constraint matrix and Lagrange multipliers, similarly to the gluing con-

2



ditions along subdomain interfaces. This simplifies the implementation of the stiffness
matrix pseudoinverse. The key point is that kernels of subdomain stiffness matrices are
known a priori, have the same dimension and can be formed without any computation
from mesh data. Furhermore, each local stiffness matrix can be regularized cheaply,
and the inverse of the resulting nonsingular matrix is at the same time a pseudoinverse
of the original singular one [7–9].

LetNp, Nd, Nn, Nc denote the primal dimension, the dual dimension, the null space
dimension and the number of cores available for our computation. Primal dimen-
sion means the number of all DOF including those arising from duplication on the
interfaces. Dual dimension is the total number of all equality and inequality con-
straints. Let us consider a partitioning of the global domain Ω into NS subdomains
Ωs, s = 1, . . . , NS (NS ≥ Nc). Subdomain stiffness matrix Ks and the subdomain
nodal load vector f s correspond to each subdomain Ωs. Rs shall be a matrix whose
the columns of which span the nullspace (kernel) of Ks. Let Bs be a signed boolean
matrix defining connectivity of the subdomain s with neighbour subdomains. It also
enforces Dirichlet boundary conditions when TFETI is used. They constitute global
objects

K = diag(K1, . . . ,KNS) ∈ RNp×Np ,

R = diag(R1, . . . ,RNS) ∈ RNp×Nn ,

B = [B1, . . . ,BNS ] ∈ RNd×Np ,

f = [(f1)T , . . . , (fNS)T ]T ∈ RNp×1.

(1)

Note that columns of R also span the kernel of K.
Let us apply the duality theory to the primal problem

min
1

2
uTKu− uT f s.t. Bu = o (2)

and let us establish the following notation

F = BK†BT , G = −RTBT , d = BK†f , e = −RT f ,

where K† denotes a pseudoinverse of K, satisfying KK†K = K, and G is a so-called
natural coarse space matrix. We obtain a new QP

min
1

2
λTFλ− λTd s.t. Gλ = e. (3)

Furthermore, equality constraints Gλ = e can be homogenized to Gµ = o by
splitting λ into µ + λ̃ where λ̃ satisfies Gλ̃ = e. This implies µ ∈ KerG. The
vector λ̃ can be chosen as the least square solution of the equality constraints, i.e.
λ̃ = GT (GGT )−1e. We substitute λ = µ + λ̃, minimize over µ (terms without µ
can be omitted) and add λ̃ to µ.

Finally, equality constraints Gµ = o can be enforced by the orthogonal projector
P = I − Q onto the null space of G, where Q = GT (GGT )−1G is the orthogonal
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projector onto the image space of GT (i.e. ImQ = ImGT and ImP = KerG). The
final problem reads

PFµ = Pd̃, (4)

where d̃ = d−Fλ̃. Note we call the action of (GGT )−1 the coarse problem of FETI.

Lemma 1 The matrix PF is symmetric positive definite on KerG.

Reader can find the proof of Lemma 1 in [12]. Thanks to the Lemma 1 the problem
(4) may be solved efficiently by the PCG (Preconditioned Conjugate Gradients) algo-
rithm. The conjugate gradient method is a good choice thanks to the classical estimate
by Farhat, Mandel, and Roux [12] of the spectral condition number:

κ(PFP|ImP) ≤ C
H

h
. (5)

2 Preconditioners

This section briefly summarizes FETI preconditioners introduced in [4]. The exten-
sion for cases with discretization heterogenities can be found in [5]. The subdomain’s
stiffness matrix K(s) can be divided into four blocks

K(s) =

[
K

(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

]
, (6)

according to indexes i (internal unknowns) and b (boundary unknowns). The Dirichlet
preconditioner reads

FD−1

=
Ns∑
s=1

B(s)

[
0 0

0 S
(s)
bb

] (
B(s)

)T
, (7)

where S
(s)
bb is the Schur complement of the block K

(s)
ii with respect to the subdomain

stiffness matrix K(s),

S
(s)
bb = K

(s)
bb −

(
K

(s)
ib

)T (
K

(s)
ii

)−1
K

(s)
ib . (8)

The Dirichlet preconditioner is numerically scalable. The second ’lumped’ precondi-
tioner lumps the Dirichlet operator on the substucture interface unknowns

FL−1

=
Ns∑
s=1

B(s)

[
0 0

0 K
(s)
bb

] (
B(s)

)T
. (9)

The preconditioner FL−1 is not numerically scalable, but it is more economical than
the Dirichlet preconditioner. The matrix B(s) may not have a full column rank as
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redundant constrains are allowed. To enable the use of the Dirichlet or lumped pre-
conditioner, a scaling matrix A(s) has to be introduced. The matrix A(s) is a diagonal
square matrix, its size equals the number of dual variables, and its diagonal entries are
given by the weight vector w. After the decomposition, each node on the cut is split
into at least two nodes. In such case, w(i) = 1/2 for each of its associated degrees of
freedom i. Generally, if the number of subdomains associated with a node is m, the
corresponding entry of the weight vector is w(i) = 1/m. The modified forms of the
Dirichlet and lumped preconditioners are

FD−1
=
∑Ns

s=1A
(s)B(s)

[
0 0

0 S
(s)
bb

] (
B(s)

)T
A(s)

FL−1
=
∑Ns

s=1A
(s)B(s)

[
0 0

0 K
(s)
bb

] (
B(s)

)T
A(s).

(10)

Obviously, these preconditioners have almost the same computational complexity as
the basic ones (7), (9). The modified conjugate gradient algorithm with the precon-
ditioner and projector (PCGP) reads as follows. By the symboll F−1 we denote any
FETI preconditioner. In our case, it is actually substituted by FL−1 or FD−1 from (10).

Algorithm 1 (Linear solver based on the TFETI method)

1: Set G := −RTBT , H := (GGT )−1, d := BK†f , and e := −RT f .
2: Compute λ̃ := GTHe.
3: Set d̃ := d− Fλ̃.
4: Compute µ from (4) by PCGP:
5: r0 = d̃, µ0 = o.

6: for j = 1, 2, . . . , until convergence do
7: Project wj−1 = PGr

j−1.

8: Precondition zj−1 = F−1wj−1.

9: Re-project yj−1 = PGz
j−1.

10: if j = 1

11: βj = 0, pj = y0.

12: else
13: βj = (yj−1)Twj−1/(yj−2)Twj−2.

14: pj = yj−1 + βjpj−1.

15: end
16: γj = (yj−1)Twj−1/(pj)TFpj.

17: µj = µj−1 + γjpj.

18: rj = rj−1 − γjFpj.

19: if ‖wj−1‖ ≤ εPCGP‖r0‖ then stop.
20: end for
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21: µ = µj .
22: Set λ := λ̃ + µ.
23: Compute α := HG(d− Fλ).
24: Compute u := K†(f −BTλ) + Rα.

3 ESPRESO Solver with Hybrid Parallelization

The ESPRESO Total FETI solver is implemented in C++. A significant part of the
development effort was devoted to writing a C++ wrapper for (1) the selected sparse
and dense BLAS routines and (2) the sparse direct solvers (MKL version of PARDISO
direct solver) of the Intel MKL library. By a simple modification of this wrapper, we
can add support for additional direct solvers as needed.

Since the solver development is mainly focused on the current and future multi
and many core architectures, in particular the Intel MIC architecture, the Intel MKL
library is the only external tool used by the solver. In addition, to be able to port the
solver to Intel Xeon Phi (in both native and offload mode) the Intel compiler is used
for compilation and Intel MPI is used as message passing library.

The hybrid parallelization inside the ESPRESO solver is designed to fit the two-
level decomposition used by the Hybrid FETI Method. This method decomposes the
problem into clusters (the first level), then the clusters are decomposed into subdo-
mains (the second level). In the case of the Total FETI method the problem is decom-
posed into subdomains only, but subdomains are processed in groups. In this paper
we focus on the Total FETI method only.

In our implementation this decomposition is mapped to parallel hardware in a fol-
lowing way. Clusters (for HFETI) or groups of subdomains (for TFETI) are mapped
to compute nodes of a supercomputer, therefore a parallelization model for distributed
memory is used - in our case the message passing (MPI). Subdomains inside a clusters
or groups are mapped to CPU cores of the particular compute node, therefore a shared
memory model is used for the second level.

Current implementation allows to process multiple clusters/groups by a single com-
pute node, but single cluster/group cannot be processed by more than one node, as this
is a general limitation of the shared memory parallelization.

There are two major parts of the solver that affects its parallel performance and
scalability: (1) communication layer (described in Section 3.1) and (2) the inter-node
processing routines for shared memory (described in Section 3.2).

The first part deals with the optimization of the communication overhead caused
mainly by gluing matrix B multiplication and application of the projector (includes
multiplication with matrix G and the application of the coarse problem). Having a
fully optimized communication layer is essential for scalability. The second part is a
set of routines developed for efficient parallel processing of multiple subdomains in
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shared memory.

3.1 MPI Communication Layer

The hybrid parallelization is well suited for multi-socket and multi-core compute
nodes. This is a hardware configuration used by most of today’s supercomputers.

The first level of parallelization is designed for parallel processing of the groups of
sub-domains. Each group is assigned to a single node but if necessary multiple groups
can be processed per node. As mentioned earlier multiple nodes cannot work on a
single group. The distributed memory parallelization is done using MPI. In particular,
we are using MPI standard 3.0 (implemented in the Intel MPI 5.0) because the com-
munication hiding techniques implemented in our FETI communication layer require
the non-blocking collective operations.

The essential part of this parallelization is the development of efficient communica-
tion layer. This layer is identical, whether the Total FETI solver runs single or multiple
domains per group. It uses novel communication avoiding and hiding techniques for
the main iterative solver. In particular, we have implemented: (1) the Pipelined Con-
juagent Gradient (PipeCG) iterative solver - hides communication cost of the global
dot products in CG behind the local matrix vector multiplications; (2) the coarse prob-
lem solver using distributed inverse matrix - merges two global communication oper-
ations (Gather and Scatter) into one (AllGather) and parallelizes the coarse problem
processing; and (3) the optimized version of global gluing matrix multiplication (ma-
trix B for FETI) - implemented as a stencil communication which is fully scalable.

The stencil communication for a simple decomposition into four sub-domains is
shown in Figure 1 where the Lagrange Multipliers (LMs) that connect different neigh-
boring subdomains are depicted in different colors. In every iteration when LMs are
updated an exchange is performed between the neighboring sub-domains to finish the
update. This affinity also controls the distribution of the data for the main distributed
iterative solver, which in our case iterates over local LMs only. In our implementation
each MPI process modifies only those elements of the vectors that match the LMs
associated with all domains in its respective group.

We call this operation the vector compression. In the pre-processing stage the local
part of the gluing matrix B is also compressed using the same approach (in this case
it means that all the empty rows are removed from the matrix) so that we can directly
use sparse matrix vector multiplication on the compressed vectors.

3.2 Inter-node Processing

The second level of parallelization is designed for parallel processing of sub-domains
in a group. Our implementation enables oversubscription of CPU cores in a way
that each core can process multiple sub-domains. This means that the number of
subdomains processed per compute node is not limited by its hardware configuration.
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Figure 1: Stencil communication in FETI defined by the gluing matrix B

If the number of sub-domains per group is less than the number of cores, then multiple
MPI processes per node must be executed in order to utilize all the CPU cores.

The shared memory parallelization is implemented using Intel Cilk++. We have
chosen the Cilk++ due to its advanced support for C++ language. In particular, we are
taking advantage of the functionality that allows us to create custom parallel reduction
operations on top of the C++ objects, which in our case, are sparse matrices.

4 Numerical experiments

We have evaluated the implementation on the solution of the following 3D linear elas-
ticity problems: (1) Synthetic 3D-cube benchmark and (2) Real-world engine bench-
mark (both described in the following sections). The performance evaluation was car-
ried out on Anselm supercomputer located at IT4Innovations in the Czech Republic.
The machine has the following parameters:

• IT4Innovation’s Anselm

– up to 3,300 cores

– non-blocking cluster of 209 nodes each with:

∗ 2x 8-core Intel Sandy Bridge E5-2665 (Sandy Bridge), 2.4GHz and
64GB of RAM
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∗ InfiniBand QDR network - 40 Gbit/s inter-node bandwidth

4.1 Real world benchmark - Evaluation of the communication layer

The first benchmark is a 2.5 million DOF model of a car engine depicted in Figure 2.
Using this benchmark we have evaluated the behavior of the communication layer
during a strong scaling test. We have run the benchmark decomposed into 32, 64, 128,
256, 512, and 1024 subdomains in the TFETI mode only on Anselm supercomputer.

64,

Figure 2: The car engine benchmark

Figure 3 shows how the two optimization techniques implemented in the commu-
nication layer and the application of the simple lumped preconditioner help the scala-
bility and solver performance in terms of single iteration time. Note that all these tests
ran with 8 MPI processes per node. As we do not have a preconditioned pipelined
CG algorithm implemented yet, we have evaluated two most efficient combinations:
(1) regular CG with the lumped preconditioner and (2) pipelined CG without precon-
ditioner, and the effect of using a distributed inverse matrix of the coarse problem.
As expected, preconditioned regular CG has slower iterations starting from 32 subdo-
mains but more importantly starting from 256 subdomains GGTINV starts making the
difference. This effect becomes dominant for decomposition into 512 subdomains and
essential in the case of 1024 subdomains as preconditioned regular CG with GGTINV
is faster than the pipelined CG without proconditioning. Reader should note, that in
both cases using GGTINV keeps the scaling superlinear up to 1024 subdomains.

The advantage of using the lumped preconditioner is shown in Figure 4 where, on
average, the number of iterations is reduced by 60% - 70%. When these numbers
are combined with the per iteration time, we get the entire solution time, shown in
Figure 5. In this figure the significant iteration reduction achieved using the lumped

9



0.127351

0.05973

0.025983

0.00902

0.004424

0.002782

0.112963

0.048849

0.01942

0.005946

0.002672

0.001466
0.001

0.01

0.1

1

32 64 128 256 512 1024

S
in
g
le
it
e
ra
ti
o
n
ti
m
e
[s
]

Number of subdomains [ ]

REGCG LUMPED GGTINV

PIPECG NOPREC GGTINV

REGCG LUMPED NOGGTINV

PIPECG NOPREC NOGGTINV

Linear strong scaling (based on 32)

Ansel 8 subdomains per node

Figure 3: Strong scaling evaluation of the real problem ”Engine 2.5 Milions DOF”
benchmark for the TFETI method. Single iteration time for pipelined CG (PIPECG)
and regular CG (REGCG) with and without the lumped preconditioner (LUMPED
and NOPREC) and a distributed inverse matrix of the coarse problem (GGTINV and
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Figure 4: Strong scaling evaluation of the real problem ”Engine 2.5 Milions DOF”
benchmark for the TFETI method. Number of iterations for different number of sub-
domains with and without the lumped preconditioner.

preconditioner is seen from very beginning but gets eliminated by iteration time for
decompositions into 512 and 1024 subdomains where using GGTINV becomes the
most significant aspect of the entire solution time. Again, the most important infor-
mation is that we are able to achieve the superlinear scaling for the entire solution up
to 1024 subdomain problem decomposition using simple preconditioner.
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4.2 Synthetic 3D cube benchmark - Evaluation of the inter-node
processing

The second benchmark is a linear elasticity problem in a three-dimensional domain.
The domain depicted in Figure 6 has a shape of a cube with the length of the edge
1m. We considered fixed steel box deformed only by its own weight. We prescribe
Dirichlet boundary condition ux = uy = uz = 0 on the left wall. All other walls are
free. The material constants are defined by the Young modulus E = 2.1× 105 [MPa],
the Poisson ratio ν = 0.3.
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Figure 6: CUBE Benchmark - decomposition into groups of subdomains, where each
group is processed by a single compute node.

This test is focused on solving the largest possible problem using limited hardware
resources. The following measurements were performed on 8 nodes of the Anselm
cluster, each with 94 GB of RAM. The evaluation criteria are: (1) memory usage and
(2) overall processing time including preprocessing and solver runtime.
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Limited memory size dictates the maximum sub-domain size, as large domains
produce large L and U factors. Therefore the sub-domain sizes must remain reason-
able.

Another limiting factor is the amount of MPI processes that can run on a certain
number of nodes and CPU cores. 8 compute nodes, each with 16 cores, can run up
to 128 MPI processes without over subscribing the CPU cores with multiple MPI
processes, which is not recommended.

The solution to the limiting number of concurrently running MPI processes is the
proposed hybrid parallelization. This allows the solver to run a single MPI process
per node and to use Cilk++ runtime for shared memory parallelization. Cilk++ run-
time will execute sub-domain processing routines in a way that all CPU cores will be
utilized but will not be forced to run multiple routines at the same time, which leads
to unnecessary context switching.

The results of these tests are shown in Figure 7. We have run the experiments for
2 problem sizes 24,361,803 DOF and 41,992,563 DOF both executed on the identical
hardware (8 nodes of Anselm supercomputer). For each problem size, three scenarios
are evaluated:

• MPI only parallelization with large subdomains (first column in Figure 7)

– 1 subdomain per MPI process

– number of MPI processes identical to total number of CPU cores

– subdomain size as required by the problem size

• optimal hybrid parallelization (second column in Figure 7)

– domain size less than 30,000 DOF (to have L and U factors of reasonable
size)

– 1 MPI process per node

– number of subdomains per MPI process as required by the problem size

• MPI only parallelization with oversubsription of CPU cores by MPI processes
(third column in Figure 7)

– domain size less than 30,000 DOF

– 1 subdomain per MPI process

– number of MPI processes as required by the problem size

In terms of the preprocessing time, the most efficient configuration is the one with
a small number of large subdomains. But the factorization time, which is significantly
higher in this case, increases the overall processing time and makes this method the
least efficient. In case of the two configurations with smaller subdomains, the solver

12



runtime is similar and the main difference is in the preprocessing time. This is sig-
nificantly lower in the case of hybrid parallelization and makes it the most efficient
configuration in terms of the processing time.

Another key factor is the memory utilization. As expected, the configuration using
large subdomains has the highest memory utilization due to the size of the factors.
Both remaining configurations have similar utilization during the solver runtime, but
there is a peak utilization during the construction of the coarse problem and calculation
of its distributed inverse matrix (GGtINV). The coarse problem is constructed on all
MPI processes and therefore, if a high number of MPI processes is running per node,
the peak utilization is very high and the solver runs out of memory. This problem
arose for the larger problem size and configuration with 1728 groups/MPI processes
(216 MPI processes per node). Therefore, in this case, we have disabled the use of
GGtINV which allows the solver to create the coarse problem only on the root MPI
process. Please note that this slows down the solver performance.

This problem is eliminated by the hybrid parallelization, as it allows us to run single
MPI process per node, and therefore only one coarse problem is constructed per node.

Problem size [DOFs] 24,361,803

number of elements per subdomain 206763 27783 27783

number of subdomains per group 1 125 1

number of MPI processes/subdomain groups 125 8 1000

Setup FETI solver preprocessing [s] 1.21 17.26 51.71

K and [s] 73.89 15.48 16.44

FETI solver [s] 74.41 65.58 66.06

Total Time [s] 149.51 98.31 134.21

Memory per [GB] 43.0 32.7 31.4

Problem size [DOFs] 41,992,563 w/o GGtINV

number of elements per subdomain 206763 27783 27783 27783

number of subdomains per group 1 216 1 1

number of MPI processes/subdomain groups 216 8 1728 1728

Setup FETI solver preprocessing [s] 4.71 50.54 out of 128.69

K and [s] 146.62 26.87 memory 28.28

FETI solver [s] 128.58 120.35 with 177.32

Total Time [s] 279.90 197.76 GGTINV 342.10

Memory [GB] 71.1 55.8 > 94 GB 53.1

Figure 7: Evaluation of the efficiency of the hybrid implementation of the FETI
method.

4.3 Large-scale tests using 3D cube benchmark

In this section, an evaluation of the hybrid parallelization in the ESPRESO FETI
Solver for large problems is presented. All tests are performed on the 3D cube bench-
mark described in Section 4.2. The following three configurations are evaluated:

• MPI only parallelization with large subdomains (Figure 8)
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Figure 8: Solving the problem of the size of 1.3 billion unknowns using large subdo-
mains with MPI parallelization only (1 MPI process per CPU core). (Configuration:
domain size = 177,957 DOF; 1 subdomains per MPI process; 24 subdomains per
node). The tests were executed on : 2, 9, 31, 56, 115, 205 and 348 nodes of SurfSara
Cartesius supercomputer).

– 1 subdomain per MPI process; 24 MPI processes per node - equal to the
number of CPU cores

– subdomain size 177,957 DOF

– number of compute nodes: 2, 9, 31, 56, 115, 205 and 348 nodes

– coarse problem size - up to 50,112 for 348 compute nodes

• Hybrid parallelization with medium domains (Figure 9)

– 64 subdomains per node; 1 MPI process per node

– domain size less than 46,875 DOF

– number of compute nodes: 1, 8, 27, 64, 125, 216 and 343 nodes

– coarse problem size - up to 131,172 for 348 nodes

• Hybrid parallelization with medium domains (Figure 10)

– 729 subdomains per node; 1 MPI process per node

– domain size less than 6,591 DOF

– number of compute nodes: 1, 8, 27. For 64 nodes the coarse problem
processing ran out of memory
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Figure 9: Solving problem of size 1.3 billion unknowns using smaller subdomains
with hybrid parallelization (1 MPI process and 24 threads per node). (Configuration:
domain size = 46,875 DOF; 64 subdomains per MPI process/node). Tests were exe-
cuted on : 1, 8, 27, 64, 125, 216 and 343 nodes of SurfSara Cartesius supercomputer).

– coarse problem size - up to 279,936 for 54 nodes

In the case of the FETI solver, decreasing the domain size reduces the factorization
time of the stiffness matrices (in the figures ”K regularization and factorization”).
For the three presented cases, the time spent by factorization is reduced from 33
seconds (177,957 DOF subdomains) to 16 seconds (46,875 DOF subdomains) and
ultimately to 5 seconds (6,591 DOF subdomains). Please note that in all cases the
identical hardware configuration works with the problem of the identical size, only
decomposition scheme (number and size of subdomains) is different.

On the other hand, increasing the number of subdomains, the coarse problem in-
creases as well which leads to exponential growth of the coarse problem processing
time (in figures this is represented with the light blue bar as ”Setup FETI solve - pre-
processing”). This behaviour can be observed in all experiments (Figures 8, 9 and
10, but it is the most obvious in Figure 10. Here the 27 nodes were assembling and
processing the coarse problem of the size 118,098 for 57 seconds. The large problem
on 64 nodes and with coarse problem of the size 279,939 was memory demanding
and therefore the solver ran out of memory. In Figure 9 the coarse problem of the size
131,712 unknowns is processed in 24 seconds due to our parallel algorithm which
assembles the GGT matrix in distribute fashion. But since the factorization of entire
GGT is done on each node, its time is not reduced.

From the overall solver runtime for 1.3 billion DOF test, it can be seen that the
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Figure 10: Preprocessing stage of the FETI solver with hybrid parallelization. The
factorization time of the stiffness matrices can be further reduced by reducing the do-
main size and increasing the number of subdomains per node. (Configuration: domain
size = 6,591 DOFs; 729 subdomains per MPI process/node). Tests were executed on :
2, 9, 27 (64) nodes of SurfSara Cartesius supercomputer).

decomposition into smaller domains is more efficient in multiple aspects. This is
possible only thanks to hybrid parallelization. As the smaller domains have better
condition number, the number of iterations is also smaller. In addition, the single
iterations time is shorter for smaller domains, therefore the FETI solver itself is more
efficient. In terms of the preprocessing, the amount of time saved by the factorization
is significant. The only slower part is the coarse problem preprocessing, but only by
5 seconds. To sum up, the solver runtime is reduced from 85 to 68 seconds.

It is our intention to further reduce the preprocessing time and to avoid the main
bottleneck of FETI, which is the coarse problem. The first result of this effort is shown
in Figure 11. Here it can be observed that we managed to flatten the FETI preprocess-
ing time (light blue bar). The penalty is in the form of the Hybrid FETI preprocessing.
This, however, is an embarrassingly parallel operation, the processing time of which
remains constant for growing number of compute nodes used for processing. A short
description of this approach is in the following section.
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5 Current work - Reducing the coarse problem pro-
cessing time

Introduced implementation of ESPRESO parallel solver demonstrates the robustness
of the FETI algorithm. Although FETI itself enables large scale problems with hun-
dreds of millions of unknowns to be solved, it has some limitations. It can be the size
of the coarse problem GGT . In linear elasticity it is equal to all of independent rigid
body modes (RBM) of all subdomains (one subdomain contributes with 6 RBM). Due
to factorization or orthogonalization process its size is limited according to the com-
puter architecture. In [17], the Hybrid Total FETI method allowing the control of the
size of the coarse problem GGT by clusters is introduced. The main idea is based on
the creation of clusters. The number of clusters can be established in advance accord-
ing to the specific requirements. Then each cluster can be decomposed into smaller
subdomains, which are glued together on ’corner’ nodes via special and ’small’ set of
Lagrange multipliers λ0 calculated exactly in each iteration. Practically it means that
together with primal variables u also the set λ0 is eliminated, therefore one cluster will
contribute to the whole size of GGT only with 6 RBM, just like one subdomain in the
common FETI method. The implementation of Hybrid FETI method to ESPRESO
library is in progress.

6 Conclusion

The results presented in this paper show that our new hybrid parallelization of the
Finite Element Tearing and Interconnecting (FETI) method for the multi-socket and
multi-core computer cluster allows users having computer clusters of a limited size to
solve larger problems.

When compared to MPI only parallelization the ESPRESO solver can now (1) use
smaller subdomains to reduce both time and memory usage for factorization of the
stiffness matrix and (2) avoid oversubscription of CPU cores with MPI processes to
reduce preprocessing time.

The results measured with large benchmarks of the size up to 1.3 billions of un-
knowns show that hybrid parallelization also reduces runtime of the FETI solver for
these types of problems. It also opens the path for developing the Hybrid FETI method
that will be implemented in ESPRESO in near future. In this paper we have already
shown its potential to significantly reduce the preprocessing time for the large number
of subdomains.

7 Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from the
National Programme of Sustainability (NPU II) project ,,IT4Innovations excellence in

17



5,31 5,20 5,23 5,26 5,25 5,26 5,26
9,59 9,72 10,06 10,01 10,25 10,15 10,26
7,30 8,42 9,48 9,66 9,85 9,97 10,49

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

3 885 087 31 080 696 104 897 349 248 645 568 485 635 875 839 178 792 1 332 584 841

K	  regularization	  and	  factorization	  [s] Setup	  Hybrid	  FETI	  solver	  -‐ preprocessing	   [s]

Setup	  FETI	  solver	  -‐ preprocessing	   [s]

CP  size  
2,058

Figure 11: Significant reduction of the preprocessing time using Hybrid FETI method
using MPI + Cilk parallelization. The coarse problem size is given by the number of
nodes. Additional preprocessing, Hybrid FETI Setup, is required to setup the solver.
This penalty, however, remains constant for any number of nodes. Problem size up to
1.3 billion unknowns. (Configuration: domain size = 6,591 DOF; 729 subdomains per
MPI process/node). Tests were executed on : 1, 8, 27, 64, 125, 216 and 343 nodes of
SurfSara Cartesius supercomputer).

science - LQ1602” and from the Large Infrastructures for Research, Experimental De-
velopment and Innovations project ,,IT4Innovations National Supercomputing Center
- LM2015070”, and by Grant Agency of the Czech Republic GAČR grant 13-30657P.
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